

## **Science Virtual Learning**

# MPI Physics 210 Thermodynamics 4: Thermal Expansion of Liquids May 12, 2020



#### Lesson: MPI Thermodynamics 4 - Thermal Expansion of Liquids May 12, 2020

# Objective: To understand how liquids expand with temperature

This video discusses how liquids expand when their temperature is raised, and works through 2 examples.

https://youtu.be/VxAeBN6\_xfM

# Video: Thermal Expansion of Liquids

|                      | Coefficient of<br>Thermal Expansion (C°) <sup>-1</sup> |                       |  |
|----------------------|--------------------------------------------------------|-----------------------|--|
| Substance            | Linear $(\alpha)$                                      | Volume (B)            |  |
| Solids               |                                                        |                       |  |
| Aluminum             | $23 \times 10^{-6}$                                    | 60 × 10-6             |  |
| Brass                | $19 \times 10^{-6}$                                    | 57 × 10-6             |  |
| Concrete             | $12 \times 10^{-6}$                                    | $36 \times 10^{-6}$   |  |
| Copper               | $17 \times 10^{-6}$                                    | $50 \times 10^{-6}$   |  |
| Glass (common)       | $8.5 \times 10^{-6}$                                   | $26 \times 10^{-6}$   |  |
| Glass (Pyrex)        | $3.3 \times 10^{-6}$                                   | $9.9 \times 10^{-6}$  |  |
| Gold                 | $14 \times 10^{-6}$                                    | $42 \times 10^{-6}$   |  |
| Iron or steel        | $12 \times 10^{-6}$                                    | $36 \times 10^{-6}$   |  |
| Lead                 | $29 \times 10^{-6}$                                    | $87 \times 10^{-6}$   |  |
| Nickel               | $13 \times 10^{-6}$                                    | $39 \times 10^{-6}$   |  |
| Quartz (fused)       | $0.50 \times 10^{-6}$                                  | $1.5 \times 10^{-6}$  |  |
| Silver               | $19 \times 10^{-6}$                                    | $57 \times 10^{-6}$   |  |
| iquids <sup>b</sup>  |                                                        |                       |  |
| Benzene              | _                                                      | $1240 \times 10^{-6}$ |  |
| Carbon tetrachloride | - par at the                                           | $1240 \times 10^{-6}$ |  |
| Ethyl alcohol        |                                                        | $1120 \times 10^{-6}$ |  |
| Gasoline             |                                                        | $950 \times 10^{-6}$  |  |
| Mercury              |                                                        | $182 \times 10^{-6}$  |  |
| Methyl alcohol       |                                                        | $1200 \times 10^{-6}$ |  |
| Water                | 2011-10 HD                                             | $207 \times 10^{-6}$  |  |

| ABLE 18.1 Average Expansio | <b>Coefficients for Some</b> | Materials Near Room Ter | nperature |
|----------------------------|------------------------------|-------------------------|-----------|
|----------------------------|------------------------------|-------------------------|-----------|

| Material<br>(Solids) | Average Linear<br>Expansion<br>Coefficient<br>(α)(°C) <sup>-1</sup> | Material<br>(Liquids and Gases) | Average Volume<br>Expansion<br>Coefficient<br>(β)(°C) <sup>-1</sup> |
|----------------------|---------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|
| Aluminum             | $24 \times 10^{-6}$                                                 | Acetone                         | $1.5 	imes 10^{-4}$                                                 |
| Brass and bronze     | $19 	imes 10^{-6}$                                                  | Alcohol, ethyl                  | $1.12 	imes 10^{-4}$                                                |
| Concrete             | $12 	imes 10^{-6}$                                                  | Benzene                         | $1.24 \times 10^{-4}$                                               |
| Copper               | $17 \times 10^{-6}$                                                 | Gasoline                        | $9.6 	imes 10^{-4}$                                                 |
| Glass (ordinary)     | $9 \times 10^{-6}$                                                  | Glycerin                        | $4.85 	imes 10^{-4}$                                                |
| Glass (Pyrex)        | $3.2 \times 10^{-6}$                                                | Mercury                         | $1.82 	imes 10^{-4}$                                                |
| Invar (Ni-Fe alloy)  | $0.9 \times 10^{-6}$                                                | Turpentine                      | $9.0 	imes 10^{-4}$                                                 |
| Lead                 | $29 \times 10^{-6}$                                                 | Air <sup>a</sup> at 0°C         | $3.67 \times 10^{-3}$                                               |
| Steel                | $11 \times 10^{-6}$                                                 | Helium <sup>a</sup>             | $3.665 	imes 10^{-3}$                                               |

\*Gases do not have a specific value for the volume expansion coefficient because the amount of expansion depends on the type of process through which the gas is taken. The values given here assume the gas undergoes an expansion at constant pressure.

#### **Coefficients of Expansion**

- Serens UI

A swimming pool has dimensions 10.0 m by 6.00 m by 3.00 m. In the morning, when the temperature is 8.0 °C, it is filled to the top with water. Later in the day, the water heats to 22.0 °C. How much water spills out of the pool? (Ignore the much smaller expansion of the pool itself.)



#### Expansion of Liquids – Example 1

A 20.0 L (5 gallon) aluminum gasoline can is completely filled with gasoline on a cold day, at -3.0 °C. The can is left in the garage, where it later heats up to 26.0 °C.

a) How much does the volume of the gasoline expand?

b) How much does the volume of the aluminum can expand?

c) Does any gas spill out? If so, how much?

### Expansion of Liquids – Example 2



#### Homework 1

- Try to solve the problem yourself, then watch the solution video:
- <u>https://youtu.be/Oyp49t-KbP4</u>

\*38.  $\bigcirc$  At the bottom of an old mercury-in-glass thermometer is a 45-mm<sup>3</sup> reservoir filled with mercury. When the thermometer was placed under your tongue, the warmed mercury would expand into a very narrow cylindrical channel, called a capillary, whose radius was  $1.7 \times 10^{-2}$  mm. Marks were placed along the capillary that indicated the temperature. Ignore the thermal expansion of the glass and determine how far (in mm) the mercury would expand into the capillary when the temperature changed by 1.0 C°.



#### Homework 2

- 34. The density of gasoline is 730 kg/m<sup>3</sup> at 0°C. Its average coefficient of volume expansion is 9.60 × 10<sup>-4</sup> (°C)<sup>-1</sup>. Assume 1.00 gal of gasoline occupies 0.003 80 m<sup>3</sup>. How many extra kilograms of gasoline would you receive if you bought 10.0 gal of gasoline at 0°C rather than at 20.0°C from a pump that is not temperature compensated?
  - Try to solve the problem yourself, then watch the solution video:
  - https://youtu.be/9Rr-XIbqb3M

#### That's it!